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ADAPTIVE ARMA SPECTRAL ESTIMATION

James A. Cadzow & Koji Ogino
Department of Electrical Engineering
Virginia Polytechnic Institucte and State University
Blacksburg, VA 24061

ABSTRACT

A novel adaptive method for efficiently obtaine
ing an ARMA model spectral estimate of a wide-sense
stationary time series is presented. It is adapt-
ive in the sense that as a new element of the time
series is observed, the coefficients of a (p,p)th
order ARMA model may be algorithmically updated.
This algorithm’'s computational complexity (i.e.,
the number of multiplications and additions
required) is of the order p log(p) for a particular
version of the method. !oreover, the spectral
estimacion performance of this anew method is found
tvpically to be far superior to such contemporary
approaches a9 the Box-Jenkins, maximum entropy,
and, Widrow's LMS methods. This performance in
conjunction with its computational eificiency mark
chis algorithm as being a primary spectral
astimacion tool.

I. INTRODUCTION

In various signal processing applications, it
i3 necessary to estimate the power spectral density
of 1 wide-sense sctationacy time series (xy}. Since
calv 4 finite set of time series’ observations are
svoicalily available for this cask. one almost
ilwavs Llavokes i1 finice parameter model for the
spectral densitv 2scimacre. Without doubc, the
rational spectral density function is specified by

.
-, -jqui=
dythe ¢ +...¢bqe '

N
Suia) — b (1)
da e tage jpw=~

i4a,e™" "+

congtitutes the most widely used of such models.
This particular model i3 generally ceferred to as
eing an Jautoregressive=-moving average (ARMA) model
of rraer (p,4).

The preaominant 2ffert {n racional spectral
estimatiun 1as been directed towards the more
speviaiized autoregressive (AR) sodel for which
1 ® ), and, tae =oving~iverage (MA) mocel in wnich
T ® 3. As examples, the asaximum encropv, one=step
‘red1.cor, Jand wutoregressive methods have been

Til3 oork was sudnorted Lo tart by the Office of
Dot Resedran ander ragract N000Lle=d0=C-d3013,

developed for efficiencly escimacing the AR model's
ay coefficients. Similarly, the periodogram and
its variants have been found to yield effective

MA modeling procedures. The interested reader will
find excellent treatments of these and other
rational spectral ascimacion methods in Haykia [1)
and Childers (2}.

Recencly, attention has been focused on
developing so-called super=-efficient algorithms for
estimacing the AR model's ay coeificients whereby
on the order of p log(p) computations are required
for this task. These algorithms are cypically
predicated on the divide and conquer approach
(e.g., see refs. [ 3]5[ 4)). These super algori-
chms offer the potential of providing a significant
computational advantage in generating AR spectral
estimates when compared to other contemporary AR
proceduras. Unfortunately, implementation of these
super algorithms is relacively complex and a rather
large value for the AR order parameter p 1is
required before the computational complexity
p log(p) is approached. It is felt that future
developments will alleviate chese difficulcies.

Despite the concentrated interest given to
AR spectral estimacion, it is widely recognized
that an ARMA spectral model is generally the most
effective rational model {rom a parameter parsi-
mony viewpoint. In recognition of this fact, a
variety of procedures have been developed for
generating ARMA models. These include the whiten~-
ing filcer approach which is typically iterative
in nature, generally slow ian coanvergence, aad,
usually requires an excessively large number of
time series’' observations to be effective (e.g..
see rafs. [ 5] & [ 6]). More desirable closed tform
proceduras which overcome these deficiencies have
been offered. These include the so-called
8ox-Jenkins method and ics variants [ 7] ~ [9 ],
and, more recencly,Cadzow has Jeveloped a "high
performance” method {10] & [1l1]. Although this
latter method has provided excellent spectral
estimation performance wihen compared to the
maximum entropy and 3ox-Jenkins methods. its
computational efficiancy is somewhat inferior.

<e shall herein odresent i novel 1igebraic
apprrach for generating in ARMA model spectral
estinate. It offers the Jual advantage >f having
4 super ilgorithm’s computaticnal efficience wnile
4t the same time mMmaintajinine a soectral estimation
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capabilicy similar to che above mentioned high
performance methad. These characteristics mark
this algorithm as being a primary spectral estima-
tion tool.

In this paper, we shall consider exclusively
the task of estimating che ARMA model's auto-
regressive coefficiencs. This escimation is, to
a large extenc, motivated by the well~-known Yyle-
Walker equations which will be briefly reviewed
in the next section. Once these aucoregressive
coefficienc estimaces have been obtained, a
variecy of procedures exisc for escimating the
ARMA model's moving-average coefficiencs. The
locerested reader may consulc references [10] &
[11] for a description of such procedures.

11. TFUNDAMENTAL CONCEPTS

It {s readily shown that the random time
series with spectral demsity (i) can be modeled as
being the response of the causal ARMA system

R, =
K .

15 xei
PR

° P
L Lh
- -

a .-
1 %=1 0

i

to the zero mean wnite noise excitation {en} whose
individual terms have variance 32. Although the
more general case may be scraightforwardly treated,
we have here restricted q = p for purposes of
case of undergstanding. The autocorrelation
characcerizacion of this ARMA system is readily
achieved by first multiplying each side of equacion
(2) by che entity x;_m and then taking the expect~
ed value. This results in the well known Yule=-
Yalker equations as given by

i~ 1a

rx(m) + 4er(m-k) = for m > p 3)

k=l
In this equation, the svmbol zy(m) denotes the
time series' autocorrelation sequence

c i@y o= E{x K- - (3)

where * and £ denote the operations of complex
conjuzacion and expected value, respectively.

In what is to follow, the Yule=Walker aequations
+3) will serve as 4 mwtivating influence in evolve
{ng a method for estimating the auctoregressive
coefficients of the ARMA model (2). These auto-
regragsive coefficient estimatas are to be based
sotally on the foilowing conciguous set of a ctime
series observations

Row Ray ooy Xy (3}
The method 2o de described will be adapcive in
adcura.,  Namelv, 3s the new time series element
qe} 2ecomes availuapie. it ig possible o
icientcly upaate the opcimal aucoregrassive co-
<f7icients generaced from the a  Jdata set (3) oo
‘stain the sptimai asutoregressive coefflcients

corresponding to the enlarged n+l data set
(1.e., xl, Kns o o+ 5 %

n+l) -

III. ARMA ESTIMATION: DIRECT APPROACH

In cthis section, a procedure for estimating
the ARMA models' autoregressive coefficients shall
be given. To begin this development, one first
evaluates the model equation (2) over the set
p+2 < k < n to obtain the following time series’

relacionships
el h s
xp+2 'xp+l Xy e %X i Eal‘
xp"_3 ‘ x;,_._2 xpﬂ ) Iyaz
i P R 20
l. . . . :! o1 |
' : R
!xn !xn-l xﬂ‘Z . e e x“‘Pi : ap;_
- - L - - -
le 4 £ . 2, byt
| P2 Tp+l Y
i - .
Fpe3 Fpe2 53 blg '
; . nE (6a)
(q gn-l . . En-p; .bp

It will be coanvenient to represent this relation-
ship in the more compact vector format

x+Xa =€d (6b)

where x, a, and b are n-p-1, p, and, p+l column
vectors respectivelv, while X and € are ‘a-p=1)+p
and (n-p-1) « (p+l) macrices, respectivelv. Tie
entries of these vectors and matrices are obtained
by directly comparing relationships (6a) and (6b).

Ve now wish to use the Yule~Walker equations
(3) in conjunction with relationship (8) to
estimate the autoregressive coefficient vector a.
This objective is readily achieved by Iirst intro=-
ducing the following (n-p-l) <t lower triangular
type matrix

x 2, 0
‘(2 x]_ R
Y . e 0 )
{ : . xl

xn—p-l xn-p-l [N xn-p—:

The selection of the integer =, wiicn specifies
the number of columns of matrix Y , is critical.
A digcussion of how one goes abuut makiag this
jelection will be shortly jiven.

Upon lefr muitiplving eacn dice of reiativn=
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ship (6b) by the complex conjugate cranspose of
matrix (7) as denoced by Y* , chere results

Yx +¥Xa = Y€p 8

This system of equacions is readily found co com=
stitute a statistical approximaction to the firsc

t Yule-Walker equations (i.e., expression (3) for
p<mz< prt). This is readily verified by taking
the expected value of axpression (8) which results
in the foilowing set of aquations

-

- ° .
(n=m) er(m) +kglaer(m-k) =0 for p<a<ptt
- 9)
It i3 to be noted thac che right side zero term
arises due to the fact thac E{Y'€} = 0 (i.e., the
aull macrix). This is a direct conseaquence of the
ARMA models' causality and the whiteness of the
excitation time series which causes
E{xn*-:k} =0 for k> n.

With the above observations in wmind, a logical
selection procedure for the autoregressive co=-
efficient vector is suggested. Namely, the auto-
regressive coefficient vector a is selected
80 as to cause the left side of relacionship (8)
to be as close as possible to the zero vector
(i.e., the expected value of the right side vector
Y<b). This results in an approximation to the
Yule-Walker equations which is "most” consistent
w#ich the time series' observacions (5). A parti-
cularly convenient measure of the closeness of
T b to the zero vector is given by the quadratic
Zfunccional

() = (Y7x + ¥xa) W + ¥'Xa) (10)

o

in which W i{s a t~xt symmectric positive semi-
definice matrix that is usually selected so as to
weight differently various elements of the error
veczor ¥ x + ¥'Xa. It is readily shown that the
iutoregraessive coefficient vector wnich ainimizes
tils quadratic Junctional satisfies the following
.wagistent svstem of p  Linear equations in the
P Jautoregressive coefficient unknowns

YNTXaY = (YWY (1)

It is possible cto use projaction theory concepts
> achleve a :omputacionally efficlent method for
*dbeaining the cpeimum vector a° when the weight-
ing matrix W is exoonentially diagomal. A raper
now in preparation will detail cthis solution pro=-
-2dure.

A few words are aow appropriate conceraing
e jelection of the inceger t which in sarc
-dracterizes natrix Y as ziven bV expression
Ty, IF t i3 set equal o p , it is seen that
celsicionship .+ 1) :onstitutes 31 statiscical
=3timate »f the irsc p Tule~wWalkar equations.
A3 Juci, relationshin rll) “Sears 1 resemblance O

the Box-~Jenkins method of autoregressive co-
efficient estimacion [ 7). Upon closer examination,
however, ic i{s found that these two approaches are
quite different. As a macter of fact, it has been
empirically found that the spectral estimacion
performance vhich results from ucilizacion of
relacionship (l1) with ¢t = p {3 distinctly becter
than that obtained with che Box~Jenkins mechod.[ll].

1f che integer t is taken to be larger than
p, then more than the minimal aumber (i.e., p) of
Yule-Walker equation approximstions are generated.
Wicth this larger base of Yule-Walkar equation
approximations (i.s., greater than p), it might be
conjectured that an improvement in spectral esti-~
mation performance would result. This anticipated
improveaent in performance has been ia fact
empirically demoustrated on numerous examples
treated to date.

It is readily shown that the procedure here
presanted for selecting cthe autoregressive co-
efficients is equivalent to Cadzow's high perform~
ance ARMA spectral estimacion method [10]&([1l]. Aas
such, a large base of empirical evidence gathered
in using this latter procedure suggests that the
spectral estimation performance of this paper's
procedure is clearly superior to that achieved by
such commonly used contemporary procedures as che
Box-jenkins and maximum entropy methods. The
advantage accrued in algebraically formulating the
spectral estimation problem via relacionship (8)
(as compared to the equivalent high performance
mechod) resides in the ability to directly use .
sophisticated least mean square concepts.

Using these concepts, it is possible tc evolve a
computationally efficienc adaptive spectral esci-
mation algorithm whose computational complexity is
on the order of pl . More importantly, by an
appropriate modification of the vector x and
matrices X and Y used in relationship (8), it
is possible to obtain a truly super computaticnal
algorithmic procedure which has a computatiomal
complexity of the order p log(p). It is chis
capabilicy which discinguishes the herein presented
mechod from che high performance method.

IV. ARMA ESTIMATION: MODIFIED APPROACH

It is possible to realize a significant compu~
tational improvement in the proposed spectral
estimacion algorithm by restricting © to be D and
by  appropriastely modifving the vector and ascrix
ancrees in expression (8). Although a variety of
such modifications are feasible, we will here
restrict our interests to two such possibilities
calied the "premodificacion” and "postmodification”
approaches. Addicional modifications are being
examined and will be shortly reportad upon.

(a) Premodificacion Method

in zhe premodiiication method, the x vectecr
and Y =3acrix as ziven in expressions %' and (7O
remain the same wnile the integer : 1is fixed at
2. The matrix X. however, s Wodified 5 the

P
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following lower triangular format

0 0 0 ... 0 T

i i
X3 Xpw2 O 0

X o ST (12)

i . <o

. xp+2i

N i

!

Xpel  ¥me2 - - - ¥ap

- -
If chis matrix i3 subscituced into relacionship
(8), an alternate method for estimacing the auto-
regressive coefficients is at hand. Due to the
lower triangular structure of both matrices X and
Y, however, it {s possible to implement an adapt-
ive algorithm for obtaining such estimates with a
computational complexity of order p. This remark-
able improvement in computational efficiency is
found to be dependent on a lattice structure imple-
=mentacion of the ARMA model (e.3., see rvef. [13]).

A measure of the speccral performance of this
premodification mecthod mav be obtained by taking
che expected value of expression (8) wich the
nactrix substitution. This is readily found to
wield

m=-p-1 P

(n=7) _ a,r (m=k) + {n=p=k=-l)a,r _(m=k) =0 (1)
T ] = X%
Rar) Kom=-0

pcm<lp

where ine ag coefficient is set equal to one.
Although these relationships don't precisely sacis-
v the Yule-Walxer equacioas as in the direct
i1dproach, i% is noted taat for n >> p, an excell-
ent 1pproximacion i{s in fact realized. With this
11 =ing, it is reasonable to anticipate that this
seamodification method will have a spectral esti-
mation serformance approaching that of the afore-
tentioned nizh rerformance (direct) method. Em=-
~irici. evigence :atherad to dace re-enforces this
e ture,

» Pedtmogifizacion Method

4 tne costmodification metnod, the altera-
Tlons o 2Je zade are given by

L. T S IEEET I YU P MR ) 1ia)
Tiner tpel *qe O 0
e o L D R 0
e . . .o - (1eD)
9
- - ' ‘{1

?xl xz . . . . xn_l'
iO S SR N 1
e . ! (14c)

10 .. .70, Xy, . . -

k boe e Yamy)
where the prime denotes the transpose operator.
Using these entries in expression (8), it is possi-
ble to evolve an adaptive algorithmic soluctiom pro=-
cedure for the optimum autoregressive coefficients.
This entails ucilization of the doubling algorithm
concept and results in an adaptive algorithm whose
computational complexity is on the order of
p log(p) [13].

To gauge the effectiveness of this posctmodifi-
cation mechod as embodied in axpression (8), che
expected value of this expression with entries (14)
i3 next taken and results in

|4
(n-m)rx(l) + S (n—mk)aer(:n-k) =0 p<m<2p (15)

k=1

As in the premodification method, these expected
value relationships do not precisely sacisiy the
governing Yule-Walker equations. On the other handg,
for n >> p, it is clear thac they do provide a very
axcellent approximation to these characteristic
equations. As such, it {3 not surprising that the
autoregressive coefficient estimates provided by
the postmodification method as represented by
expression (8) yield a very satisfactory spectral
astimation performance. This performance has been
empirically found to approach that of the high
performance (direct) method.

In order to test the effectiveness of the
herein proposed ARMA spectral estimation approach,
the classical problem of resolving two sinusoids
embedded in additive white noise was considered.
The spectral estimaces obtained from these methods
are shown in Fig. 1 along with the results genera~-
ted using the maximum entropy and Box~-Jenkins
mechods. It {s apparent that the escimates obtain-
ed using this paper's approach were clearly super-
ior for this task.

V. CONCLUSION

A novel approach to ARMA model spectral esci-
2ation has been presented. This estiration
approach possesses the dual attributes of providing
an excellent spectral estimation performance, and,
of having an exceptional computational efficiency.
Its excellent spectral estimation performance has
bean demonstrated on numerous examples treated to
date and virtually alvays exceeds that achieved by
such contamporary procedures as the maximum entropy
and Box-Jenkins Methods.

The above mentioned super computacional effic~
iency was achieved bv appropriately modifying some
vector and matrix entries. In particular, two such
wodificacions have been herein offered. Further
studies are now deing conducted relative to emplove
ing the basic approach herein taken o evolve even
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better performance. These results will be reported
in forthcoming papers.
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Yormalized Frequency

Fig. 1. Spectrum estimates of the time series
Xy = /20 cosa(0.4m) +v2 cos(0.5mn) +w(n)
0<ncs 159

consisting of two sinusoids ac frequencies 0.4
(10dB) and 0.5 (0OdB) embedded in additive white
noise of variance one: (a) Fourth Order AR Model
using the maximum entropy covariance method, and,
ARMA models of order (4,3) using the (b) Box-
Jenkins Method, (c) Premodiffcation Method,

(d) Direct Method, and, (e) Poscmodification
Method.










